Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope.

نویسندگان

  • Shingo Fukuda
  • Takayuki Uchihashi
  • Toshio Ando
چکیده

In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner's fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α3β3 subcomplex of F1-ATPase in dynamic action at ∼7 frames/s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory

A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...

متن کامل

Sensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory

A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...

متن کامل

High-speed atomic force microscopy in slow motion--understanding cantilever behaviour at high scan velocities.

Using scanning laser Doppler vibrometer we have identified sources of noise in contact mode high-speed atomic force microscope images and the cantilever dynamics that cause them. By analysing reconstructed animations of the entire cantilever passing over various surfaces, we identified higher eigenmode oscillations along the cantilever as the cause of the image artefacts. We demonstrate that t...

متن کامل

Dynamic modeling and nonlinear vibration simulation of piezoelectric micro-beam in self sensing mode of atomic force microscope

Nowadays, atomic force microscope is considered as a useful tool in the determination of intermolecular forces and surface topography with the resolution of nanometers. In this kind of microscope, micro cantilever is considered as the heart of the microscope and is used as a measuring tool.  This paper is aimed towards investigating the behavior of a piezoelectric micro cantilever with a triang...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2015